Репарация ДНК
Репарация ДНК - это механизмы, позволяющие выявлять и исправлять ее повреждения.
Источники повреждения ДНК
ДНК постоянно подвергается воздействию физических, химических или биологических агентов, которые могут вызывать мутации и изменять генетическую информацию человека. Модификации ДНК могут быть вызваны эндогенными молекулами или механизмами клеточного метаболизма, ошибками в процессе репликации ДНК, некоторыми вирусными инфекциями и даже факторами окружающей среды, такими как ультрафиолетовый свет, химические агенты или ионизирующее излучение. Эти факторы мешают таким процессам, как транскрипция и репликация, и даже могут вызывать неконтролируемое деление клеток.
Генетическая изменчивость также необходима для того, чтобы виды могли приспосабливаться к изменяющимся условиям; однако определенная генетическая информация имеет решающее значение, и ее модификация несовместима с выживанием организма.
Роль репарации
Чтобы максимально точно сохранить генетическую информацию, организм имеет сложные механизмы репарации ДНК. В большинстве случаев изменения ДНК не проявляются фенотипическими изменениями и не оказывают неблагоприятного воздействия на организм, но некоторые мутации могут стать фатальными, но их можно избежать как раз с помощью механизмов репарации, включающих сложные ферментативные системы, стремящиеся исправить мутации.
Некоторые болезни человека, известные как синдромы нестабильности хромосом и некоторые виды рака связаны со сбоями в системах репарации ДНК.
Повреждения ДНК могут возникать спонтанно или могут быть вызваны воздействием мутагенных агентов. Дезаминирование, депуринизация и окислительное повреждение азотистых оснований — вот некоторые из повреждений, которые спонтанно возникают в ДНК.
Типы репарации
Чтобы свести к минимуму повреждение генетического материала, в организме есть различные системы восстановления, которые активируются в зависимости от типа повреждения, нанесенного геному.
Эти механизмы репарации можно разделить на четыре категории: прямая репарация, эксцизионная репарация, репарация несоответствия (ошибочное восстановление) и репарация двухцепочечных разрывов.
-
Прямая репарация.
Она включает в себя системы, которые непосредственно устраняют повреждение ДНК сразу после его возникновения. Этот тип восстановления не очень распространен, так как есть некоторые необратимые повреждения ДНК. Фотореактивация - это механизм, с помощью которого прокариотические организмы с помощью фермента фотолиазы распознают пиримидиновые димеры, продуцируемые УФ-светом. Этот фермент связывается с димером тимина и использует световую энергию для разрыва ковалентных связей между пиримидинами, заставляя их повторно дополняться антипараллельной цепью. Другим типом ферментов, участвующих в этой системе репарации, являются алкилтрансферазы, ферменты, которые удаляют алкильные группы гуанина и восстанавливают исходную структуру без необходимости изменения скелета ДНК.
-
Эксцизионная репарация.
Базовая система эксцизионной репарации удаляет из генома поврежденные основания, образующиеся в результате алкилирования, ионизирующего излучения, окисления и дезаминирования. В эту систему вовлечены ферменты, называемые ДНК-гликозилазами, по меньшей мере восемь различных типов которых специфичны для каждого поражения. Восстановление осуществляется путем гидролиза гликозидной связи между азотистым основанием и сахаром, что приводит к удалению поврежденного основания.
-
Система восстановления несоответствия.
Она основана на репарации несовпадающих оснований и коррекции петель, возникающих в цепи ДНК в результате проскальзывания полимеразы при репликации. Наиболее классическим примером этой системы репарации является система, используемая E. coli , в которой участвуют три белка: MutS, MutL и MutH. Белок MutS распознает несовпадающие основания и связывается с ними; MutL позволит сформироваться восстановительному комплексу и, в свою очередь, активирует MutH с эндонуклеазной активностью; Кроме того, это приведет к разрыву цепи, в которой расположено неправильно спаренное основание, а MutH обладает способностью различать цепь, которая должна быть восстановлена, с помощью явления гемиметилирования.
-
Репарация двухцепочечных разрывов.
Это точная система восстановления, которая действует во время фазы S клеточного цикла. В процессе репликации эта система индуцируется необходимостью иметь правильную копию ДНК, которая служит шаблоном для восстановления утраченной информации в поврежденной цепи.
-
SOS-система.
Она реагирует на накопление одноцепочечной ДНК при блокировке процесса репликации. Он состоит из более чем 40 генов, которые активируются белком RecA ( рекомбинантный белок A ) у прокариот.
Статьи по теме
На протяжении многих лет исследователи находили подтверждения тому, что избыток сахара в кровотоке может стимулировать процесс, называемый гликированием (гликацией), который, в свою очередь, приводит к старению кожи.
Как замедлить или даже остановить этот разрушительный для красоты процесс?
Процессы старения неизбежны, однако десятилетиями ученые пытаются их понять. Сегодня существует множество теорий о механизмах возрастных изменений, хотя ни одна из них не может в полной мере объяснить процесс старения, и они часто противоречат друг другу. Одна из таких гипотез - теория соматических мутаций, или мутационная теория.
Жить лет до 100-120 и отлично себя чувствовать, избежав возрастных заболеваний вроде Альцгеймера – в этом цель биохакинга. Эта концепция зародилась в 1988 году в США. Молодые ученые проводили в домашних лабораториях эксперименты, в том числе, на себе, чтобы улучшить здоровье и продлить жизнь человечества.